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I. INTRODUCTION

High accuracy measurements of atomic lifetimes are difficult, with only a few examples

of precisions well under one percent known. For this reason, consideration of radiative cor-

rections to lifetimes is usually not necessary. Until recently the most prominent exception

to this situation was the decay rates of orthopositronium and parapositronium, where de-

terminations of accuracy 180 ppm [1] and 215 ppm [2] respectively have been made. In

these exotic atoms the radiative corrections start in order α with large coefficients, and the

leading radiative correction are clearly visible, both because in these two-body atoms the

wave function is known analytically and because quantum electrodynamic (QED) correc-

tions start in order α with large coefficients, giving contributions of 2.1 percent and 0.5

percent respectively.

In recent years, however, a new approach has been developed that exploits the fact

that the dipole-dipole potential between two alkali atoms, which goes as as C3/R
3, can be

accurately measured, and C3 is proportional to the lifetimes of np states of the atoms. This

has allowed the determination of the lifetime of the 2p1/2 state of lithium as 27.102(7) ns

[3], the lifetime of the 3p3/2 state of sodium as 16.230(16) ns [4], the lifetimes of the 4p1/2

and 4p3/2 states of potassium as 26.69(5)ns and 26.34(5) ns [5], the lifetimes of the 5p1/2

and 5p3/2 states of rubidium as 27.75(8) ns and 26.25(8) ns [6], and the lifetimes of the

6p1/2 and 6p3/2 states of cesium as 34.88(2) ns and 30.462(3) ns [7]. (References to other

experimental determinations of lifetimes, some of which are of higher accuracy, can be found

in the above references. We note also that the lifetimes of the francium 7p1/2 and 7p3/2 states

have been measured as 29.45(11) ns and 21.02(11) ns using a different technique [8].) These

high accuracies, which for matrix elements correspond at the best to 50 ppm, now make the

calculation of radiative corrections of interest, even though unlike the case of positronium

the corrections to E1 matrix elements are known to enter, for hydrogenic ions [9], in order

α(Zα)2.

There are two other reasons for carrying out calculations of these radiative corrections.

Firstly, this is a relatively unexplored region of QED. It has only been very recently that

the first full calculations of one-loop radiative corrections to the decay rate of the hydrogen

isoelectronic sequence have been carried out [9]. That calculation was done by considering

the imaginary part of the two-loop Lamb shift, which is equivalent to calculating the shift in
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the lifetime. Here we adopt a different method, and instead calculate radiative corrections

to the associated transition matrix element. The introduction of this technique requires a

nontrivial modification of the previous formalism, and also provides a check of that method.

The second additional reason for calculating radiative corrections to transition matrix

elements in the alkalis is the interest in parity nonconservation (PNC) in cesium [10]. Re-

cently a large binding correction to the Z boson-electron vertex radiative correction has been

found that has significant implications for the standard model. The lowest-order radiative

correction, −α/2π, has been shown [11–13] to be enhanced through binding corrections by

almost an order of magnitude. However, the actual radiative correction is to the E1 matrix

element of a 6s electron to a 7s electron, with an opposite parity component present in one

of these electrons induced by Z exchange with the nucleus. The full radiative correction cal-

culation needed then involves the evaluation of the diagrams in Fig. 1, of which diagram 1c,

where the radiative correction is on the photon rather than the Z vertex, is of the kind to

be treated here. Thus the calculations on cesium that will be presented here will be of use

for this larger scale task.

We note that the methods used in this paper have previously been applied to calculating

the Lamb shift [14] and the radiative correction to hyperfine splitting [15] for the ground

states of the alkalis, where QED effects larger than experimental accuracy were found.

However, the calculations remain untested because of the relative inaccuracy of many-body

methods (with the exception of lithium, where highly accurate variational methods are

available [16]). We will see that the same situation is present for alkali lifetimes, and thus

the present work provides yet another impetus to many-body theory to reach the accuracies

presently of interest for both radiative corrections and experiment.

In the next section, the generalization of the method used for the previous calculations of

radiative corrections in the alkalis will be laid out. Of particular interest are certain issues

related to the fact that the Gell-Mann-Low formalism for energies used in the past work

has to be changed because we are now instead dealing with matrix elements. In Section III,

the technique is applied to hydrogenic ions to compare with previous work, and in Section

IV the main results of the paper are presented. We conclude with a discussion of how this

approach can be made more accurate and how it can be generalized for application to the

calculation of radiative corrections to cesium PNC.
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II. FORMALISM

When one is interested in calculating energy shifts in atoms, Sucher’s generalization [17]

of the Gell-Mann-Low formalism provides a systematic way to derive them from the S-matrix

through the formula

∆E = lim
ε→0, λ→1

iε

2

1

Sε,λ

∂Sε,λ

∂λ
, (1)

where Sε,λ is the S-matrix with the interaction Hamiltonian HI(t) multiplied by the factor

λe−ε|t|. (2)

The overall factor of ε is compensated by the fact that the S-matrix diverges as 1/ε. In higher

orders, factors of 1/ε2 are encountered in the numerator that are canceled by 1/ε terms

coming from expanding the denominator. When considering matrix elements the factor λ,

which accounts for a combinatorial factor specific to the Gell-Mann-Low formalism, will not

be used, but we continue to use the exponential damping factor ε, which will lead to the

frequent occurrence of what is effectively the delta function,

Dε(x) =
1

π

ε

x2 + ε2
. (3)

We replace the time-independent perturbation of Ref. [18] with a time dependent Hamil-

tonian in the length-gauge form appropriate for describing the absorption of a photon in a

electromagnetic field of strength E0 linearly polarized in the z direction,

HLG = eE0

∫
d 3x ψ†(�x, t) �x ·ẑe−iωt ψ(�x, t)a(�k, ẑ). (4)

We have made the dipole approximation, a good approximation for the neutral alkalis, so the

momentum of the initial photon, �k, plays no role in the following. In addition we suppress

the factor eE0 in the following. We consider the matrix element of this Hamiltonian between

an initial state v taken to be a ns ate (2s for lithium, 3s for sodium, etc.) along with a

photon with energy ω, and a final state w taken to be a np1/2 or np3/2 state with the same

principal quantum number n. It is important to keep the photon energy ω distinct from the

resonance energy ω0 ≡ εw − εv, and in particular the limit ε → 0 is always understood to be

taken before the limit ω → ω0. In lowest order, the S-matrix is then

S = −2πiDε(ω − ω0)zwv, (5)
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and following the convention just mentioned, this becomes the usual

S = [−2πiδ(ω − ω0)]zwv. (6)

In the following, we shall suppress the factor in square brackets. In Table I, we present

results for the dipole matrix element rwv, with

rwv =
∫ ∞

0
dr r

[
gw(r)gv(r) + fw(r)fv(r)

]
, (7)

from which zwv can be obtained by either multiplying by a factor of (1/3)(−1)jw−mv or
√

2/3 for the ns1/2−np1/2 and ns1/2−np3/2 transitions, respectively. These are lowest-order

results obtained using the local Kohn-Sham potential, a description of which can be found

in Ref. [14]. Issues involved in correcting these results with many-body methods will be

addressed in the concluding section, but here we will concentrate on radiative corrections.

In evaluating these we will work in terms of the ratio Rwv defined through

δzwv ≡ α

π
zwvRwv, (8)

such that

zwv + δzwv = zwv

(
1 +

α

π
Rwv

)
. (9)

At this point we also define the frequently occurring self-energy operator

Σij(ε) = −4πiα
∫

d 3x
∫

d 3y
∫ dnk

(2π)n

1

k2 + iδ
ψ̄i(�x)γµSF (�x, �y; ε − k0)γ

µψj(�y), (10)

in terms of which the lowest-order self-energy part of the Lamb shift of a state v, treated in

Ref. [14], is simply Σvv(εv).

Most of the discussion of radiative corrections to zwv is very similar to the treatment

using the Gell-Mann-Low formalism given in Ref. [18], except here we pull out a factor of

−2πiδ(ω−ω0) as opposed to isolating 1/ε terms. As described in more detail in that paper,

three diagrams shown in Fig. 2 contribute to the radiative correction to the matrix element.

The S-matrix associated with the vertex (V) diagram of Fig. 2b is given by

SV = −32π4α
∫

d 3x
∫

d 3y
∫

d 3z
∫ dnk

(2π)n

ei�k·(�x−�z)

k2 + iδ

∫ dE1

2π

∫ dE2

2π
ψ̄w(�x)γµSF (�x, �y; E1) �y ·ẑ γ0

×SF (�y, �z; E2)γ
µψv(�z)Dε(E1 + k0 − εw)Dε(E2 + k0 − εv)Dε(E2 − E1 + ω). (11)
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One can make the substitutions E1 → εw −k0 and E2 → εv −k0 in the electron propagators,

which then allows the E1 and E2 integrations to be carried out,
∫ dE1

2π

∫ dE2

2π
Dε(E1 + k0 − εw)Dε(E2 + k0 − εv)Dε(E2 − E1 − ω)

=
3ε

4π3

1

(ω − ω0)2 + 9ε2

→ δ(ω − ω0)

4π2
. (12)

We note that in energy calculations where the factor ω − ω0 vanishes, a factor 1/3 results

that is canceled because a derivative with respect to the factor λ present in the energy

formula acts on a factor λ3. Here the factor 1/3 is not present for a different reason, that

being the fact that the effective infinitesimal factor used to obtain the energy conserving

delta function is 3ε. We then find, after pulling out the factors mentioned above, a vertex

contribution of

δzwv(V) = −4πiα
∫

d 3x
∫

d 3y
∫

d 3z
∫ dnk

(2π)n

ei�k·(�x−�z)

k2 + iδ
ψ̄w(�x)γµSF (�x, �y; εw − k0) �y ·ẑ γ0

×SF (�y, �z; εv − k0)γ
µψv(�z). (13)

This expression has both ultraviolet divergences and reference state singularities that cancel

with the side graphs of Figs. 2a and 2c discussed below. The ultraviolet divergence is isolated

analytically by replacing both bound state propagators with free propagators, which gives an

ultraviolet divergent term along with a finite remainder we tabulate as Rwv(V; 00) in the first

row of Table II. (We note at this point that we present results only for ns−np1/2 transitions.

Those for ns − np3/2 transitions should not be too different for neutral systems considered

here, as radiative corrections to the lifetimes of the 2p1/2 and 2p3/2 states are essentially

the same for low-Z hydrogenic ions [9].) We then form the ultraviolet finite difference of

δzwv(V) and δzwv(V; 00) and evaluate it in coordinate space. A Wick rotation k0 → iω

is carried out, which passes poles: the separate contributions are tabulated as Rwv(V; iω)

and Rwv(V; Poles) in the second and third rows of Table II. The reference state singularity

mentioned above is present in the first term, and is regulated through the replacement

εv → εv(1 − iδ) and εw → εw(1 − iδ) with δ typically chosen to be 10−6.

The treatment of the side graphs also differs from the previous energy approach. The

starting expression for the “side-right” (SR) diagram of Fig. 2a is

SSR = −32π4α
∫

d 3x
∫

d 3y
∫

d 3z
∫ dnk

(2π)n

ei�k·(�y−�z)

k2 + iδ

∫ dE1

2π

∫ dE2

2π
ψ̄w(�x)γ0 �x ·ẑ SF (�x, �y; E1)γµ
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×SF (�y, �z; E2)γ
µψv(�z)Dε(E1 + ω − εw)Dε(E2 + k0 − εv)Dε(E2 + k0 − E1). (14)

Replacing the first electron propagator with a spectral representation gives

SSR = −8iπ3α
∑
m

∫
d 3x

∫ dE1

2π

∫ dE2

2π

ψ̄w(�x)γ0 �x ·ẑ ψm(�x)

E1 − εm(1 − iδ)
Σmv(E2)

×Dε(E1 + ω − εw)Dε(E2 + k0 − εv)Dε(E2 + k0 − E1). (15)

The Dε functions emphasize E1 = εv. If the state v is excluded in the sum over states m, the

same kind of manipulations applied to the vertex graph allow one to determine a “perturbed

orbital” (PO) contribution from the SR diagram of

δzwv(PO; ns) =
∫

d 3x
∑
m�=v

ψ̄w(�x)γ0 �x ·ẑ ψm(�x)

εv − εm + iδ
Σmv(εv). (16)

The notation (PO; ns) refers to the fact that this contribution is essentially the self-energy

Σṽv(εv), where ṽ is a perturbation of the ns state. A similar contribution, δzwv(PO; np)

arises from the side-left diagram, and is so designated because it is Σww̃(εw). Its specific

value is

δzwv(PO; np) =
∫

d 3x
∑

m�=w

Σwm(εw)
ψ̄m(�x)γ0 �x ·ẑ ψv(�x)

εw − εm + iδ
. (17)

The case when m = v requires more care. We need to make a Taylor expansion of the

electron propagator in the self-energy function around the point E2 = εv − k0,

SF (�y, �z; E2) = SF (�y, �z; εv − k0) + (E2 − εv + k0)S
′
F (�y, �z; εv − k0) + · · · . (18)

The first term of the expansion is highly divergent, involving the integral

∫ dE1

2π

∫ dE2

2π

1

E1 − εv + iδ
Dε(E1 + ω − εw)Dε(E2 + k0 − εv)Dε(E2 + k0 − E1)

=
1

8iπ3 [(ω − ω0)2 + ε2]
− ε

{
ω − ω0

π3 [(ω − ω0)2 + 9ε2] [(ω − ω0)2 + ε2]

}
. (19)

Because we take the limit ε → 0 before ω → ω0 the second term can be dropped, leaving

the divergent expression

δzwv(Div) = − i

2ε
zwvΣvv(εv) (20)

In the energy formalism this corresponds to a 1/ε2 term that is canceled by a term in the

denominator of Eq. (1). Here it does not cancel, but instead forms the second term of the

Taylor expansion of the phase factor

e−i[Σvv(εv)+Σww(εw)]/2ε (21)
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multiplying zwv, where we have now included the effect of the side-left diagram. Considera-

tion of higher-order diagrams with two self-energies and a photon interaction show that even

more divergent terms going as, for example, Σ2
vv(εv)/ε

2 are present that continue the Taylor

expansion. Thus this divergent term is not directly canceled as in the energy formalism but

instead can be ignored because it enters only as a phase [19]. However, the second term in

Eq. (18) does contribute a finite amount to the scattering amplitude,

δzwv(D) =
1

2
zwv [Σ′

vv(εv) + Σ′
ww(εw)] , (22)

where we have included a similar term arising from the side-left diagram. The treatment

of these derivative (D) terms follows that of the vertex, but in this case we simply sum the

finite part of the free propagator term, the Wick rotated term, and the terms in which poles

are encircled and present the results as Rwv(D) in the fourth row of Table II. The ultraviolet

infinite part of the derivative terms cancels a similar term from the vertex exactly, and the

reference states are allowed to cancel numerically. Finally, the two perturbed orbital terms

are listed as Rwv(PO; ns) and Rwv(PO; np) in the fifth and sixth rows of Table II. The

sums of all contributions give the radiative correction results Rwv shown in the last row of

Table II.

III. HYDROGENIC IONS

In a previous paper [9], the imaginary part of the two-loop Lamb shift was used to

calculate radiative corrections to the 2p1/2 and 2p3/2 lifetimes of hydrogenic ions. In this

section, we redo the 2p1/2 correction for one of these ions using the present matrix element

formalism as a check of both approaches and to show the role of radiative energy shifts in

lifetime corrections. The 2p3/2 case included M1 decays, and so cannot be used for a direct

comparison.

In Ref. [9], the radiative correction to the decay rate Γ is defined in terms of the function

R(Zα) by

Γ = Γ0

[
1 +

α

π
R(Zα)

]
. (23)

An important feature of these corrections is that both radiative corrections to energies and

radiative corrections to matrix elements are of similar importance. As E1 decay rates in

the length gauge are the product of the cube of the energy difference ω0 and the square
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of the transition matrix element zwv, one component of R(Zα) which arises from energy

corrections should be given by

3
δE

E
=

α

π
(Zα)2

[
−32

3
ln(Zα)−2 + 22.815

]
(24)

where we have used the standard values of the leading Zα-expansion contributions to the

1s and 2p1/2 Lamb shifts. At Z = 5, this contributes −0.064 to R(Zα). However, the

actual value of this function calculated in Ref. [9] was −0.014, so that a substantial positive

contribution of about 0.050 must come from the shift in the matrix element. We have

carried out this calculation using the techniques described above and find a result of 0.025

for the function Rwv defined in Eq. (8). This result is in perfect agreement with the expected

value, as it has to be doubled to account for the fact that the matrix element enters as a

square in decay rate calculations. But while this result shows the consistency between the

present matrix-element and the former decay-rate approaches, there is no improvement in

the numerical accuracy using our present method for these radiative correction calculations.

IV. RESULTS AND DISCUSSION

As found with our previous work on E1 matrix elements for hydrogenic ions [9], there

is a high degree of cancellation between contributing terms shown in the first six rows of

Table II. This is due to the fact that radiative corrections to decay rates enter in order

α(Zα)2. In fact, if one puts the perturbed orbital contributions aside, the cancellation is

almost complete. As a result, the radiative correction is dominated by the (PO, ns) terms,

which are the larger of the two perturbed orbital terms. Since it is a standard practice with

the alkalis to derive matrix elements from observed lifetimes by dividing out the cube of the

experimental energy differences, we do not need to consider radiative corrections to energies

here, as they are automatically excluded in empirically extracted matrix elements.

The experimental accuracies for the alkali matrix elements are half the accuracies of the

lifetimes quoted in the introduction, specifically being 130 ppm, 490ppm, 940ppm, 1440ppm,

50 ppm, and 1870 ppm for lithium through francium. Comparing with the results of Table II,

we see corresponding theoretical contributions of 12 ppm, 39ppm, 149ppm, 488ppm, 606ppm,

and 2158 ppm. Thus these contributions are in principle measurable for several of the alkalis,

particularly cesium and francium.
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For the case of lithium, the present approach is certainly less accurate than that avail-

able from nonrelativistic quantum electrodynamics (NRQED). The nonrelativistic lithium

wavefunction is extremely well understood using variational techniques [16], and the same

kind of NRQED calculations reported in Ref. [9] for hydrogenic ions can certainly be used

for neutral lithium. A nonrelativistic evaluation of the lifetime of the lithium 2p1/2 state

has been carried out in Ref. [20] with a result of 27.1045(14) ns which includes finite mass

corrections along with relativistic corrections. The quoted error came mainly from the fact

that the relativistic corrections were not directly calculated, and could be eliminated with

rigorous relativistic calculations. Regardless, the radiative correction calculated here is so

small that it should not make any difference to the theoretical lifetime in comparing with

experiment.

The cases of cesium and francium are more problematic because of the complexity of their

wave functions. A great deal of effort has gone into treating these wave function accurately,

largely spurred by interest in PNC transitions. However, while experimental accuracy is now

certainly high enough for detection of radiative corrections of the size found here for cesium

and almost at the level needed for francium, further advances in many-body theory will be

required, as was the case for the Lamb shift [14] and the hyperfine splitting [15], before one

can decisively say this effect has been seen. Incidentally, a theoretical advantage for lifetimes

as compared to hyperfine splittings is the relative insensitivity of lifetimes to nuclear effects:

as emphasized in Ref. [15], uncertainties in the distribution of nuclear magnetism lead to

theoretical uncertainties that are difficult to control.

A major spur to theoretical work on accurate cesium wave functions is the fact that the

observation of PNC in the atom [10] has significant implications for particle physics. Before

the large binding correction to the lowest-order radiative correction −α/2π was found, a

discrepancy with experiment existed. As discussed in the introduction, a motivation for the

present work was to provide a basis for the full calculation of the diagrams shown in Fig. 1.

We note, for example, that diagram 1c is of the same form as the vertex diagram V in

Fig. 2b, with the difference that the 6s (or 6p1/2) state in diagram 2b must be replaced with

a perturbed orbital of the same parity which arises from the 6p1/2 (or 6s) state perturbed

by a Z boson exchange with the nucleus. Thus a relatively straightforward modification of

the codes developed for the present calculations will allow the determination of this term.

In fact, with the exception of diagram 1e, the entire PNC calculations of Fig. 1 can be
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treated as perturbations of either the weak interaction calculations [13], the self-energy

calculations [14], or the present transition matrix calculations. We are thus in a position to

carry out the bulk of the full radiative correction calculations. The fact that the previously

neglected radiative correction to the E1 matrix element is 0.261α/π as shown in Table II

makes it likely that the full PNC calculation will differ quantitatively, though perhaps not

qualitatively, from the calculations that consider only the Z vertex.

Since the lowest-order results presented in Table I are substantially corrected by higher-

order effects in many-body perturbation theory (MBPT) [21], similar corrections can be

expected for the radiative corrections. The simplest way to account for these corrections

is to assume that Rwv, defined as a ratio of the radiative correction to the lowest-order

matrix element, is valid when the lowest-order dipole matrix element is replaced with more

accurate results obtained with MBPT methods. As the size of the radiative corrections

is small, even if this is only roughly true, the basic size of the effect would have been

established here. To attain more accuracy, a QED perturbation theory approach could be

taken. In that case, one would first consider graphs of the type shown in Fig. 1 where the Z

vertex is replaced by interactions with other electrons. For even higher accuracy, one could

consider yet more complicated graphs with one absorbed photon, one radiative photon, and

two interactions with the other electrons: this is known, in the case without the radiative

photon, to give results within a few percent of the experimental answers [21]. Progress in

these large scale calculations, taken together with continuing advances in experiment and

many-body methods, should allow tests of the lifetimes of the alkalis at the level achieved

for positronium.
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TABLE I: Dipole matrix elements rwv for ns1/2 −np1/2 and ns1/2 −np3/2 transitions in the alkalis

with Kohn-Sham potentials. Units a.u..

transition Li Na K Rb Cs Fr

ns1/2 − np1/2 4.171 4.588 5.681 6.009 6.585 6.511

ns1/2 − np3/2 4.171 4.587 5.679 5.995 6.545 6.328

TABLE II: Self-energy contributions Rwv to E1 matrix elements for ns1/2 − np1/2 transitions in

the alkalis: error of 0.001 for Sum. Units (α/π)zwv.

Term Li Na K Rb Cs Fr

Rwv(V; 00) -9.162 -9.308 -9.509 -9.573 -9.655 -9.647

Rwv(V; iw) 134.712 105.062 127.516 125.136 132.719 112.464

Rwv(V; Poles) -137.256 -107.481 -129.741 -127.273 -134.877 -114.624

Rwv(D) 11.698 11.712 11.731 11.738 11.748 11.747

Rwv(PO;ns) 0.003 0.031 0.067 0.182 0.326 0.787

Rwv(PO;np) 0.000 0.001 0.000 0.000 0.000 0.202

Sum -0.005 0.017 0.064 0.210 0.261 0.929
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(a) (b)

(c) (d)

(f)(e)

FIG. 1: Feynman diagrams for the radiative correction to electron excitation by a laser photon,

indicated by the wavy line terminated with a triangle, in the presence of interaction with the

nucleus through the exchange of a Z boson, indicated by the dashed line terminated with a cross.

(a) (b) (c)

FIG. 2: Feynman diagrams for the radiative correction to the matrix element for ns + photon →

np.
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